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Abstract. We apply deep metric learning for the first time to the prob-
lem of classifying planktic foraminifer shells on microscopic images. This
species recognition task is an important information source and scientific
pillar for reconstructing past climates. All foraminifer CNN recognition
pipelines in the literature produce black-box classifiers that lack visuali-
sation options for human experts and cannot be applied to open set prob-
lems. Here, we benchmark metric learning against these pipelines, pro-
duce the first scientific visualisation of the phenotypic planktic foraminifer
morphology space, and demonstrate that metric learning can be used to
cluster species unseen during training. We show that metric learning out-
performs all published CNN-based state-of-the-art benchmarks in this
domain. We evaluate our approach on the 34,640 expert-annotated im-
ages of the Endless Forams public library of 35 modern planktic foramini-
fera species. Our results on this data show leading 92% accuracy (at 0.84
F1-score) in reproducing expert labels on withheld test data, and 66.5%
accuracy (at 0.70 F1-score) when clustering species never encountered
in training. We conclude that metric learning is highly effective for this
domain and serves as an important tool towards expert-in-the-loop au-
tomation of microfossil identification. Key code, network weights, and
data splits are published with this paper for full reproducibility.

Keywords: applied computer vision· planktic foraminifers · deep learn-
ing · animal biometrics · paleobiology · climate science.

1 Introduction

Motivation. Planktic foraminifers are an invaluable source of information for
reconstructing past climate records [25]. Estimating ocean temperature, salin-
ity, and pH using foraminifers involves quantifying the species composition of
shell assemblages or picking individual specimens, often at low abundance, out
of thousands of specimens. Identification of specimens to the species level is nec-
essary as species-specific vital effects can result in different isotopic fractionation
values [34]. Foraminifers grow their calcium carbonate shells by adding cham-
bers in a spiral, where the main gross morphological traits used for taxonomic
identification are chamber form and arrangement, the size and position of an
aperture, and other features [15] (see Figs. 1 and 2). The differences between
species are often plastic along sliding morphological change [35] and human
identifiers manipulate the specimen under the microscope to aid recognition.
In contrast, single-view static image recognition confidence can be restricted
by acquisition artefacts, imaging quality, and the viewpoint-dependent visibility
limitations of traits. These factors pose a significant challenge with regard to the
use of computer vision systems for automating single image identification.
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Fig. 1. Deep Metric Learning of Foraminifer Spaces. Schematic overview of the
approach. Expert-annotated planktic foraminifer imagery (green) is used to metrically
learn (blue) embeddings of specimen visuals in a 128D morphological appearance space
via a Resnet50-based deep network using hybrid reciprocal triplet and Softmax loss
minimisation. The built space naturally allows for a t-SNE visualisation of specimens
and species including their geometric and topological relations. Unseen specimens and
even unseen species not used for training can be projected into this space for automatic
classification (red). Domain experts can now for the first time see the location of
specimens in the morphological space and interpret results taxonomically.

Paper Contributions. Inspired by classic machine learning (ML) applications
for microfossils [4,5,48], recent pioneering works [19,30] started to evaluate con-
volutional neural networks (CNNs) for visual foraminifer recognition. However,
none of the published pipelines so far allow for meaningful visualisations and
expert interactions with the learned space of specimens, application to unseen
species, or utilisation of contrastive gradients. In this paper, we address the above
limitations for the first time via deep metric learning [2,40] in the domain. Fig. 1
illustrates our approach visually. After a review of background and methodol-
ogy, we will experimentally demonstrate that metric learning can outperform
the current state-of-the-art (SOTA) in foraminifer classification benchmarks. In
addition, we will show that our approach can generate grey-box foraminifer clas-
sification models with which domain experts can interact. Finally, we will explore
how far the projection of unseen foraminifer species into this space (zero-shot
scenario) can generalise learning beyond trained foraminifer classes.

2 Background

Manual Microfossil Identification. Despite the importance of foraminifers
in paleoclimatology, few aggregated public resources exist to train people in the
task of distinguishing morphologically similar taxa. Further, diverging views on
species concepts and boundaries (e.g., ‘clumpers’ vs. ‘splitters’) result in conflict-
ing taxonomies in the literature. As a result, the taxonomic agreement is some-
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Fig. 2. Foraminifer Microscope Imagery. The Endless Forams public image library
is used as our data source of modern planktonic foraminifera. (left) The distribution
of the species classes varies strongly with a mean of 795 and a standard deviation of
1171. (right) Visualisation of a sample from each of the 35 species in the dataset.

times only ∼ 75% [1] for planktic foraminifera since they exhibit near-continuous
morphological gradations between closely related taxa [11] (see Fig. 2). In some
cases, morphological variation is unrelated to genetic differentiation; however in
others genetic analysis has revealed the existence of some pseudo-cryptic species
between morphological endmembers [20]. These difficulties resulted in different
species concepts over time, which are particularly prominent in self-trained tax-
onomists [1]. Some of these challenges might be removed by growing databases
of expert-classified images [7], opening opportunities for machine-driven classi-
fication that limit subjective biases of human classifiers.

Current Machine Vision for Microfossil Classification. Modern semantic
image classification frameworks are almost without exception grounded in feed-
forward CNNs, introduced in their earliest form by the ground-breaking work of
Krizhevsky et al. [24] and leading to further milestone architectures including
VGG16 [42], Inception [44], ResNet [14], ResNeXt [50], and deep transformer
networks [47]. Taxonomic computer vision (CV) applications of these techniques
for microfossils are still very rare in the literature, despite steep advances in
general animal biometrics [26,46]. Nevertheless, ML-based species identifica-
tion [8,33] has been applied to several microscopic taxa, including coccoliths [43],
pollen [45], and phytoplankton [49]. While there have been early attempts for
automatic classification on marine microfossils [4,48] the most successful focused
on coccoliths which are predominantly flat [5,6]. There exist only very few pa-
pers which investigate the use of modern deep learning techniques on planktic
foraminifers [19,30,32], all of which put forward traditional non-contrastive CNN
architectures optimising for prediction correctness via SoftMax cross-entropy.
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Metric Latent Spaces. Metric learning [2,40] moves away from focusing learn-
ing on optimising prediction correctness only; instead, a mapping into a class-
distinctive latent space is constructed where maps to the same class naturally
cluster together and distances directly relate to input similarity under the train-
ing task. A simple way of building a latent space of this form is to pass two
inputs through an embedding function and then use a contrastive loss LC [13]:

LC = (1 − Y )0.5d(x1, x2) + 0.5Y max(0, α− d(x1, x2)), (1)

where x1 and x2 are the embedded input vectors, Y is a binary label denot-
ing class equivalence/difference for the two inputs, and d(·, ·) is the Euclidean
distance between two embeddings. However, this formulation cannot put simi-
larities and dissimilarities between different pairs of embeddings in relation. A
triplet loss formulation [41] instead utilises embeddings xa, xp and xn denoting
an anchor, a positive example of the same class, and a negative example of a
different class, respectively. Minimising the distance between the same-class pair
and maximising the distance between the different-class pair can be achieved by:

LTL = max(0; d(xa, xp) − d(xa, xn) + α), (2)

where α is the margin hyper-parameter. Reciprocal triplet loss removes the need
for this parameter [31] and accounts for large margins far away from the anchor:

LRTL = d(xa, xp) + 1/d(xa, xn). (3)

Including a SoftMax term in this loss can improve performance, as shown by
recent work [27,17]. Thus, the SoftMax and reciprocal triplet losses can be com-
bined into the standard formulation first published in [2] used in this paper:

L =
−log(exclass)∑

i e
xi

+ λLRTL, (4)

where λ is a mixing hyper-parameter. For the foraminifer classification prob-
lem in particular this allows both relative inter-species difference information
captured by the reciprocal triplet loss component as well as overall species infor-
mation captured by the SoftMax term to be used as backpropagation gradients.

Latent Space Partitioning for Classification. Once an embedding function
has been learned for a metric space, any new sample – even one of the unseen
classes – can be projected into this space. However, assigning a class label to
this sample based on its position in the space eventually requires a partitioning
of the latent space. Direct maps, as well as hierarchical [22] and partitional [12]
clustering algorithms, have been used for this. We will experiment with a wide
variety of partitioning options in Tab. 2(top right) including Gaussian Mixture
Models (GMMs) [36], Logistic Regression, Support Vector Machines (SVMs) [9],
Multi-layer Perceptrons (MLPs) [8], and k-Nearest Neighbours [18]. Once par-
titioned, metric spaces expose model structure plus outlier information, can be
visualised by mapping into lower-dimensional spaces, and often capture proper-
ties of the target domain beyond the specific samples used for training. Before
using these techniques on the problem of foraminifer classification, we will first
introduce the dataset and experimental settings.



Visual Microfossil Identification via Deep Metric Learning 5

Fig. 3. Imaging Details and Classification Challenges. Microscopic imaging of
3D microfossils often obfuscates key taxonomic features due to variable viewpoint and
acquisition conditions. (left) Within-class 3D viewpoint variability for Globigerinoides
sacculifer yields 2D images with different visible chamber numbers rendering this
key feature less informative. (middle) Out-of-focus acquisition can remove species-
characteristic texture information, here of Globoturborotalita rubescens, blurred in the
top images. Light microscopy images are also unable to capture fine grain wall tex-
ture details that would be useful for taxonomic identification. (right) Morphologically
similar species such as Globigerinoides elongatus (top) and G. ruber (bottom) are dif-
ficult to distinguish from single-view static visuals alone. Ground truth labeling often
requires additional information to establish secure taxonomic classification.

3 Dataset

Endless Forams. We use the Endless Forams image library [21] for all ex-
periments. It is one of the largest datasets of its kind and publically avail-
able (at endlessforams.org). It contains 34,640 labelled images of 35 differ-
ent foraminiferal species as detailed and exemplified in Fig. 2. This dataset
was built based on a subset of foraminifer samples from the Yale Peabody Mu-
seum (YPM) Coretop Collection [10] and the Natural History Museum, Lon-
don (NHM) Henry A. Buckley Collection [37]. The dataset is also associated
with a taxonomic training portal hosted on the citizen science platform Zooni-
verse (zooniverse.org/projects/ahsiang/endless-forams). Species classifi-
cation in this dataset is truly challenging compared to many other computer
vision tasks since: 1) planktonic foraminifers exhibit significant intra-class vari-
ability (see Fig. 3(left)); 2) critical morphological properties are not consistent
across 3D viewpoint and acquisition conditions (see Fig. 3(left), (middle)); and
3) visual intra-species differences are barely apparent between some taxa (see
Fig. 3(right)).

4 Experimental Setup

Implementation Details. For all experiments, our PyTorch-implemented met-
ric learning architecture extends a ResNet50 backbone pre-trained with Im-
ageNet. The network is set to optimise the loss specified in Eq. 4 combin-
ing SoftMax and reciprocal triplet loss components with the mixing parameter
λ = 0.01 as suggested in [17]. Training progresses via the SGD [38] optimiser for
100 epochs as quantitatively illustrated in Fig. 4. For full testing comparability

endlessforams.org
zooniverse.org/projects/ahsiang/endless-forams
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Fig. 4. Metric Learning Training Details. Curves quantifying the evolution of
training losses and validation accuracy across all 100 epochs of training. Note that
the two loss components are plotted separately showing the early conversion of the
Softmax dimension, whilst RTriplet loss continues to alter the metric embedding space
at higher magnitudes albeit at down-scaled weighting given λ = 0.01 in Eq. 4.

with [21] we utilised their withheld test set for performance stipulation, whilst
using the remaining 27,731 images augmented via rotations, scale, and Gaussian
noise transforms for training (reported as Ours). In a second workflow and for
full compatibility with [30], we also produced results via 5-fold cross-validation on
random train-test data splits (reported as Ours*). For sample selection during
training of all workflows, we follow the ‘batch hard’ mining approach [16] where
triplets are mined within mini-batches. This yields overall moderate triplets,
i.e. training with the hardest examples within each mini-batch. The published
source code [23] provides full details regarding all of the above for full result
reproducibility. Training takes approx. 48 hours on a P100 GPU system with
12GB RAM. We obtain classifications for each test sample projected into the
metric space via running kNN [18] with n=5 over the projected training samples.

5 Results.

Baseline Comparisons. The simplest baselines for the foraminifer species clas-
sification problem are given by using transfer learning via ImageNet-initialised
off-the-shelf CNN architectures [30]. Tab. 1(rows 01-06) compares key architec-
tures and their performance against our setup using 5-fold cross-validation at
standard resolution of 224× 224. These results show that metric learning domi-
nates such baselines without exception. Operating at 160×160 pixels, the original
2019 VGG-based benchmark by Hsiang et al. [21] achieved 87.4% accuracy on a
withheld test set. Using the same test set, our metric learning approach improves
on this performance significantly by 4.5% as shown in Tab. 1(rows 07-08).

Improving the State-of-the-Art. CycleNet used by Marchant et al. [30]
claims current state-of-the-art performance on the data at an accuracy of 90.3%
when using 5-fold cross-validation at 128 × 128. Tab. 1(rows 09-12) compare
their key results against our metric learning approach under this regime, show-
ing improved metric learning accuracy of 91%. When using their best-performing
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......... ...Row... Method Resolution Acc Prec Rec F1S
(pixels) (weighted) (macro) (macro) (macro)

A

01 VGG19* [30] 224 × 224 77.1 70.5 64.9 66.9
02 MobileNetV2* [30] 224 × 224 77.7 70.0 65.2 66.8
03 InceptionV2* [30] 224 × 224 77.7 69.5 64.8 66.4
04 DenseNet121* [30] 224 × 224 80.2 75.2 69.2 71.3
05 ResNet50* [30] 224 × 224 81.8 76.7 71.4 73.4
06 Ours* 224 × 224 91.6 88.2 78.3 81.3

B
07 VGG16 [21] 160 × 160 87.4 72.4 69.8 70.0
08 Ours 160 × 160 91.9 91.3 81.9 84.6

C

09 ResNet18Full* [30] 128 × 128 88.5 84.1 77.8 79.9
10 ResNet50CycleFull* [30]......... 128 × 128 90.1 85.1 78.7 80.8
11 BaseCycleFull* [30] 128 × 128 90.3 84.9 78.4 80.5
12 Ours* 128 × 128 91.0 87.2 78.9 81.1

D
13 BaseCycleFull [30] 224 × 224 90.5 84.5 79.6 81.5
14 Ours 224 × 224 91.7 88.1 77.0 80.7

416 × 416 92.0 89.0 81.5 84.2

Table 1. Species Classification Results. Performance of our metric learning ap-
proach against SOTA techniques [30,21] quantified via accuracy, precison, recall and
F1 score. Testing regime and input resolution were made to match the settings of pre-
vious works exactly where * indicates 5-fold cross-validation (see Sec. 4). (A) Metric
learning supremacy against various off-the-shelf CNNs at 224×224 initialised via Ima-
geNet as described in [30]. (B) Metric learning increases accuracy of [21] at 160×160 by
4.5%. (C) Critically, our approach outperforms SOTA CycleNet [30] at their published
128 × 128 resolution. (D) Finally, re-running CycleNet [30] under the regime of [21]
and at 224 × 224 shows metric learning also dominating peaking at 92% at 416 × 416.

CycleNet [30], scaling it up to a standard 224 × 224 resolution and using the
testing regime of [21] their results improve slightly. However, our approach out-
performs this new benchmark by another 1.2% as shown in Tab. 1(rows 13-14).
Metric learning reaches top accuracy of 92% at resolution 416× 416 as shown in
Tab. 1(row 14). Fig. 5(right) depicts a detailed confusion matrix for this setting.

Visualisation of Foraminifer Space. In contrast to basic CNN approaches,
we can now visualise the learned 128D metric space, revealing an appearance-
based distribution of planktic foraminifers. Fig. 5(left) shows this first scientific
visualisation of phenotypic appearance space by projecting training and testing
sets into the metric space before using t-SNE [28] to reduce dimensionality to 2.

Open Set Performance. By withholding some species1 from training alto-
gether, we can start to evaluate metric learning potential beyond seen training
species, i.e. learning about the planktic foraminifer domain more generally. To
do this, we project the unused training data of withheld classes during testing
into the metric space together with the training data of used classes. We then
utilise kNN with all these data points to measure how far test sets of seen or un-
seen classes are classified correctly. For the unseen species classes at 224 × 224,
accuracy drops to 66.5% (at 0.70 F1-score) in our experiment. This result is
remarkable since about 2/3 of never-seen species specimens can still be asso-
ciated correctly amongst all 35 species. We thus conclude that metric learning
does indeed capture important general features relevant for planktic foraminifer
classification beyond any particular species appearance.
1 Tail classes 1, 5, 9, 14, 22, 23, 26, 29, 33, and 34 were chosen as our open set to have

maximum specimen counts available during training.
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..

Fig. 5. Learned Metric Space Visualisation and Confusion Matrix. (left) 2D
t-SNE visualisation of the training (RandIndex=99.9) and testing (RandIndex=87.0)
sets projected into the metric space; and (right) Confusion matrix detailing test per-
formance where taxonomic similarities of prominent mix-ups are visually highlighted.

Ablations, Resolution, and Augmentation. Tab. 2(top) details ablation
experiments that demonstrate that the chosen metric learning loss functions
and clustering algorithms are effective, contribute to performance, and indeed
outperform other tested setups. An analysis of the dependency of our approach
on resolution is presented in Tab. 2(bottom left). It outlines that above 160×160
pixels performance gains are widely diminished and flat-line, supporting the
choices taken in [21]. Whilst SOTA competitor networks [30] also augment their
data, augmentation can be essential for metric learning techniques generally [40].
Tab. 2(bottom right) quantifies this fact and shows that performance in the
foraminifer classification domain is indeed intricately linked to augmentation,
with rotation variations producing the strongest component impact.

6 Taxonomic Reflection.

Taxonomic Interpretation of Performance. We observe that species that
are taxonomically related to each other are indeed the ones that are confused
most often by the machine. For example, species from the same genus (e.g. 4
vs 5; 11 vs 12; 24 vs 25) are often misclassified symmetrically as highlighted in
Fig. 5(right). This alignment is consistent with human classification difficulties
and suggests that metric space distances are indeed related to visual properties
humans use to differentiate species. Generally, we suggest three main reasons for
lower classification performances, all of which would also present challenges for
human classifiers. First, phylogenetic closeness, i.e. closely related sister taxa,
can result in many shared taxonomic features that make differentiation difficult.
Classes 4 and 5, for example, share many large-scale morphological features and
are only distinguished by a lip at the aperture [29]. Secondly, some classes (e.g.
11 and 12) are not even typically distinguished in palaeontological studies, but
are genetically distinct [3] and hence separated in the database. The distinguish-
ing visual feature is a sliding scale of radial chamber compression which makes
systematic labelling challenging. Thirdly, not all planktic foraminiferal species
reach the same maximum size in the modern ocean [39], and size is an important
feature used for taxonomic classification by human experts. As all the images
have the same number of pixels, size information is lost in the database used and
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Loss Acc Prec Rec F1S RI .... Alg Acc Prec Rec F1S RI
Ours (LRTL + SM) 91.9 91.3 81.9 84.6 87.1 ..Ours (kNN). 91.9 91.3 81.9 84.6 87.1

SoftMax+LTL 91.4 89.6 81.3 84.3 86.2 SVM 91.8 88.3 78.8 81.6 86.6
..RTriplet (LRTL).. 89.3 79.2 71.0 73.9 82.9 MLP 90.9 80.9 80.8 78.9 86.2

Triplet (LTL) 22.2 12 9.3 9.5 4.7 LR 91.5 84.6 74.7 78.0 86.4
SoftMax 91.2 89.9 81.9 84.2 86.5 GMM - - - - 63.8

..Resolution .. Acc Prec Rec F1S RI .... Transform Acc Prec Rec F1S RI
416 × 416 92.0 89.0 81.5 84.2 87.3 ...Ours (R+S+G).... 91.9 91.3 81.9 84.6 87.1
224 × 224 91.7 88.1 77.0 80.7 86.8 R 91.2 86.8 79.3 81.5 85.8
160 × 160 91.9 91.3 81.9 84.6 87.1 S 88.4 87.6 76.3 80.0 81.1
120 × 120 91.0 88.4 79.2 82.1 86.3 G 85.0 75.0 66.2 69.1 76.3
80 × 80 90.0 84.8 78.1 80.2 84.1 – 82.7 75.2 66.2 69.0 72.4

Table 2. Design Ablations, Resolution and Augmentation. Benchmarks use
the testing regime of [21] and resolution 160 × 160 as standard; RI denotes the Rand
Index. (top left) Performance of different loss functions confirm the superiority of L.
(top right) Benchmark of various clustering approaches. (bottom left) Performance
increases saturate around 160 × 160 providing only marginal gains if input resolution
is increased beyond this point. (bottom right) Metric learning performance in this
domain is intricately dependent on sufficient data augmentation. Rotation augmenta-
tion (R) in particular benefits accuracy, whilst scale augmentation (S), and Gaussian
noise addition (G) have smaller effects. Applying all three (R+S+G) is most beneficial.

the amount of information per pixel will vary strongly between a species which
is up to 5 times larger than another. For the smallest specimens, imaging often
reaches the limits of typical optics, resulting in blur and other effects, as shown
in Fig. 3(middle) for class 24.

7 Conclusion.
The accurate and efficient visual recognition of planktic foraminifers within

shell assemblages in light microscopy imagery is an important pillar required
for unlocking climatic archives. We have shown here for the first time that deep
metric learning can be effectively applied to this task. We documented how
deep metric learning outperforms all published state-of-the-art benchmarks in
this domain when tested on one of the largest public, expert-annotated image
libraries covering modern planktic foraminifera species. We further provided de-
tailed result evaluation and ablation studies. Based on the metrically-learned
feature spaces, we also produced the first scientific visualisation of a phenotypic
planktic foraminifer appearance domain. Finally, we demonstrated that metric
learning can be used to recognise specimens of species unseen during training by
utilising the metric space embedding capabilities. We conclude that metric learn-
ing is highly effective for this domain and can form an important tool towards
data-driven, expert-in-the-loop automation of microfossil identification.
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