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Abstract 
The development of deep learning methods using convolutional neural networks (CNNs) 
has revolutionised the field of computer vision in recent years. The automation of 
taxonomic identification using CNNs leads naturally to the use of such technology for 
rapidly generating large organismal datasets in order to study the evolutionary and 
ecological dynamics of biological communities across time and space. While CNNs have 
been used to train machine learning classifiers that can identify organisms to the species 
level for several groups, this vision of automated community ecology has yet to be 
thoroughly tested or fulfilled. Here, we present a case study of automated community 
ecology using a large dataset of Atlantic planktonic foraminifera for which the generation 
of species labels and morphometric measurements was completely automated. We 
compare standard community diversity metrics between the fully automated dataset and 
a “traditional” dataset with human-identified specimens. We show that there is high 
congruence between the results, and that machine classifications help avoid biases that 
can result in the inference of misleading biodiversity patterns. Our study demonstrates the 
viability and potential of fully automated community ecology and sets the stage for a new 
era of ecological and evolutionary inquiry driven by artificial intelligence.


Introduction 

The field of community ecology focuses on the organisation of and interactions between 
species that comprise an interacting biological network occupying a common geographic 
area. The study of ecological questions on a community level is essential for 
understanding the function, health, and dynamics of ecosystems and the relationship 
between the biosphere and the physical environment. Understanding these interactions 
has become crucial in light of rapid anthropogenic climate change and increasing 
evidence that we are currently experiencing the sixth mass extinction (Barnosky et al. 
2011), with global biodiversity decreasing alarmingly across many groups. Conducting 
such studies requires large amounts of data in order to accurately represent the diversity 
and composition of a given biological community, and thus lend statistical rigour to the 
underlying analyses. Traditionally, collecting such data is a laborious, time-intensive task 
that requires preparation and curation of samples, identification of specimens by 
taxonomic experts, and manual measurement of morphological metrics of interest such 
as the length, width, and volume of individuals. The generation of these datasets is thus a 
rate-limiting factor in the study of community ecology, with the time and labor required 
becoming increasingly problematic in light of increasing rates of species turnover and 
ecological disruption in response to climate change (Barnosky et al. 2011; Ceballos et al. 
2015; Ceballos et al. 2017), which in turn necessitate increased large-scale biodiversity 
monitoring.
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The development of machine learning methods that are able to parse visual information 
with little to no human interaction in recent years provides a powerful new set of tools 
which may be fruitfully applied to the field of community ecology. Specifically, computer 
vision performance has experienced a renaissance thanks to the development of 
convolutional neural networks (CNNs), which are comprised of interconnected layers of 
“neurons” that perform convolutions (i.e., mathematical transformations). Supervised 
deep learning algorithms using CNNs are able to achieve superhuman accuracies in 
classification tasks given appropriate hyperparameters and sufficient (in both quantity and 
quality) training data without the need for hand-engineered features. These networks 
require large training sets of image/label pairs as input in order to learn to correlate the 
visual information in an image with its associated identity. Careful preparation of the 
training data is necessary in order to avoid common issues such as overfitting and 
systematic bias. Automated classifiers using CNNs have been successfully trained for 
taxonomic identification of pollen grains (Sevillano et al. 2020; Olsson et al. 2021), insects 
(Valan et al. 2019; Hansen et al. 2020), planktonic foraminifera (Hsiang et al. 2019; Mitra et 
al. 2019; Marchant et al. 2020; Karaderi et al. 2022), among others. These models allow 
for rapid identification of large numbers of organisms with accuracies superior to those of 
human experts on average. Such datasets are essential for the study of community 
ecology and CNNs thus represent a revolutionary methodology for the future of this field.


Along these lines, several initiatives for generating such ecologically relevant data have 
begun operation in the last decade (e.g., camera-trap datasets such as Snapshot 
Serengeti (Swanson et al. 2015)). However, while the generation of such datasets 
continues apace, to date the downstream analyses relevant to community ecology using 
such datasets have yet to be explicitly tested and validated (though see Marchant et al. 
(2020), which compares relative abundance, counts per sample, and fragmentation rates 
through time for eight benthic and six planktonic foraminifer species between their 
automated system and the Endless Forams (Hsiang et al. 2019) dataset). Here we 
present, to our knowledge, one of the first in-depth studies comparing relevant ecological 
measures and diagnostics between a traditional human-generated dataset and a CNN-
generated dataset. We focus on planktonic foraminifera, a group of single-celled marine 
protists that play an essential role in oceanic carbon cycling and biological productivity 
and are used extensively to reconstruct paleoclimatic and oceanographic records. Using 
the Endless Forams database, we demonstrate that the ecological composition and 
diversity of both datasets is similar, while revealing certain biases and limitations of 
human-labeled datasets. We further evaluate the ecological characteristics of the 
combined human+machine dataset, thus paving the way for the use of machine-
generated datasets for studies of community ecology.


Materials & Methods 

Taxonomic and Shape Data 
This study uses two datasets which are both derived from the Yale Peabody Museum 
Coretop Collection (YPMCC), which contains 61,849 planktonic foraminifer individuals 
above the 150-µm size fraction sourced from 34 Atlantic coretop samples (Elder et al. 
2018). A subsample of 24,569 specimens were independently identified in quadruplicate 
by 24 taxonomic experts as part of the Endless Forams (http://endlessforams.org/) 
database (only identifications with ≥75% agreement between experts retained). 
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This subsample is not entirely random. All images were randomly selected from the 
available pool of images in batches of 5,000 or 10,000 images, the initial batch of 10,000 
images were selected from all 34 sites. However, following feedback from the taxonomic 
experts, the remaining images were randomly selected from only those sites with good 
preservation (23 out of 34). In total, 3,020 images from the 11 sites with poor preservation 
were identified (12.3% of all identified images). Because the images from these 11 sites 
do not constitute a true random sample (as they were excluded from sampling rounds 
subsequent to the first), we removed these images from the dataset, thus restricting the 
original community to only the 23 sites with good preservation (Fig. S1). We also removed 
any individuals that were identified as not a planktonic foraminifer (9 individuals). This final 
set of 21,540 images and associated labels serves as our human-identified dataset (HD) 
and comprises 33 species.


The remaining 26,663 individuals from the YPMCC from the 23 sites with good 
preservation were not identified by human experts. We generated species labels for these 
individuals using a CNN (see details below). This set of images and CNN-predicted labels 
serves as our machine-identified dataset (MD). These images are accessioned in the 
open-access data repository Zenodo (DOI: 10.5281/zenodo.7268451). As in the human 
dataset, we removed all objects identified as not a planktonic foraminifer (9 individuals), 
resulting in a final dataset of 26,654 individuals comprising 32 species (with 
Globorotaloides hexagonus being the single unrepresented species). As both of these 
datasets are derived from the same original populations, and their composition was 
randomly determined (after removing the individuals sampled from poorly preserved 
sites), they are representative of the same underlying biological community and should 
share ecological characteristics and properties. The relative composition of these 
datasets by site is shown in Fig. S2 in the Supplementary Materials.


The full dataset of 48,194 individuals is termed the combined dataset (CD). Morphometric 
data (e.g., 2D area and perimeter, major and minor axis length, estimated volume using a 
dome base [see Hsiang et al. (2016)]) for these foraminifera were extracted from the 
measurements from Elder et al. (2018). A total of 2,410 individuals had no associated 
shape information, and these individuals were thus excluded from the analyses, resulting 
in 45,784 individuals. All labels and morphometric data are available in the Supplementary 
Materials.


CNN-facilitated label prediction 
We generated labels for the machine-identified dataset using the best-performing CNN 
described in (Hsiang et al. 2019). This CNN uses the VGG-16 (Simonyan & Zisserman 
2014) architecture and achieves a top-1 accuracy of 87.4% (compared to an average 
human expert accuracy of 71.4%). We used this model to predict species labels for the 
foraminifera without human-assigned labels. The prediction script is available at https://
www.github.com/palaeomachinist/foram-comm-ecol and is implemented using the Keras 
Python API (Chollet 2015) using the GPU-enabled TensorFlow backend (Abadi et al. 
2016). The prediction was run on the Beella machine in the Hull Lab in the Department of 
Earth and Planetary Sciences at Yale University (6-core 2.4Ghz CPU, 32 GB RAM, 2x 
NVIDIA GeForce GTX 1080 GPUS [8 GB], Ubuntu 15.04.5 LTS).


Measuring characteristics of community ecology 
In order to assess whether machine-generated datasets are suitable for studies of 
community ecology, we measured several standard measures of community composition 
and biodiversity for the HD and the MD independently in order to determine whether they 
are equivalent. We measured the following characteristics: (1) α-diversity of all sites 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 1, 2022. ; https://doi.org/10.1101/2022.10.31.514514doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.31.514514
http://creativecommons.org/licenses/by-nc-nd/4.0/


(species richness [Hill number q=0], Shannon index [Hill number q=1], and Simpson index 
[Hill number q=2]); (2) Pielou’s evenness; (3) ß-diversity between all sites; (4) Rank 
abundance; (5) Latitudinal abundance; (6) Latitudinal body size trends vs. sea-surface 
temperature (SST); and (7) Sitewise relative abundance. We use the Chao version of all α-
diversity measures, i.e., richness sensu Chao (1984; 1987), transformed Shannon diversity 
(Chao et al. 2013), and transformed Simpson diversity (Good 1953; Chao et al. 2014). We 
also compared the HD and MD as independent assemblages following Chao et al.’s 
(2020) diversity comparison procedure, whereby we calculate for the HD and MD the 
sample completeness profile, asymptotic and empirical diversity estimates, sample-size- 
and coverage-based rarefaction/extrapolation curves, and the evenness profile (sensu 
Chao & Ricotta (2019)). These profiles allow us to compare diversity patterns between the 
HD and the MD while incorporating information about sample coverage integrated with 
the calculation of Hill numbers (Hill 1973) parameterised by order q.


All Chao diversity metrics were calculated using the “iNEXT” package (ver. 2.0.20) (Hsieh 
et al. 2016) with data classified as abundance data. Although these metrics assume 
sampling with replacement, it has been previously noted that results from samples taken 
without replacement (as is the case with our dataset) should be similar if the sample is 
small relative to the size of the underlying assemblage (Gotelli & Colwell 2011). Rank 
abundance curves were calculated using the rankabundance function from the 
“BiodiversityR” package (ver. 2.12-3) (Kindt & Coe 2005). Relative abundances were 
calculated using the make_relative function in the “funrar” package (Grenié et al. 2017). 
Jaccard indices were calculated using the vegdist function in the “vegan” package (ver. 
2.5-7) (Oksanen et al. 2020). Body sizes were extracted from the Elder et al. (2018) 
dataset; for the volume estimates, the domed base measurement was used (see Hsiang 
et al. (2016)). The diversity comparison procedure was implemented using the 
“iNEXT.4steps” package described in Chao et al. (2020) with data classified as taxonomic 
abundance data. Table S1 shows calculated values for the special cases where q = 0, 1, 2 
for all presented diversity metrics. All code and scripts used to process the data can be 
found in the GitHub repository available at https://github.com/palaeomachinist/foram-
comm-ecol.


Sea surface temperature 
All SST data was taken from the NOAA Extended Reconstructed Sea Surface 
Temperature (ERSST) v5 dataset (Huang et al. 2017), which uses Empirical Orthogonal 
Teleconnections (EOTs) to reconstruct SSTs on a 2˚ x 2˚ grid using data from the 
International Comprehensive Ocean-Atmosphere Dataset (ICOADS). The monthly SST 
records for the time period between 2000 and 2018 were used to calculate the zonal 
mean SST (dashed green curve in Fig. 3) and plot the average SST spatial map for the 
Atlantic Ocean (Fig. S1) using CDO (Schulzweida 2019).


Results 

The rank abundance curves for the human (HD), machine (MD), and combined (CD) 
datasets are shown in Fig. 1. While the exact ordering of species in the rank abundance 
curves for the HD (Fig. 1a) and MD (Fig. 1b) differ, the same 10 species comprise the top 
10 ranks. These top 10 ranks account for 84.6%, 81.9%, and 83.1% of the total 
abundance for the HD, MD, and CD, respectively. In both cases, Globigerinoides ruber 
occupies the top rank, comprising 29.7%, 26.4%, and 26.4% of the total abundance of 
each respective dataset. The rankings of Globigerinoides sacculifer and Globigerina 
bulloides (ranks 2 and 5) are switched between the two datasets, as are the rankings of 
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Globorotalia inflata and Neogloboquadrina pachyderma (ranks 6 and 7) and Globorotalia 
truncatulinoides and Globigerina falconensis (ranks 8 and 10). The remaining rankings are 
the same between the HD and the MD. The rank abundance plot of the combined dataset 
(Fig. 1c) follows the same ordering as the ranking for the MD except for the positions of 
G. inflata and N. pachyderma, which are flipped (as in the ordering of the HD). All rank 
abundance data are available in the Supplementary Materials.




The normalized abundance maps (Fig. 2) show similar distribution patterns for each 
species amongst the datasets, with the maps being essentially identical when the number 
of samples (N) is large (e.g., as with Neogloboquadrina incompta, which has NHD=1,856 
and NMD=2,439 [Fig. 2a]). In general, marked deviations between the human and machine 
maps are only seen when N is small and clearly does not represent a statistically robust 
sample (e.g., as with Globigerinita uvula, which has NHD=6 and NMD=11 [Fig. 2b]). 
Normalized abundance maps for all species can be found in the Supplementary Materials. 
In the species with high values of N, we observe two recurring inverse patterns of 
normalized abundance: either increasing normalized abundance from the equator to the 
poles (as exemplified by Globorotalia inflata [Fig. 2c]; this pattern is also seen in N. 
incompta [Fig. 2a]), or decreasing normalized abundance from the equator to the poles 
(as exemplified by Globigerinoides ruber [Fig. 2d]). Fig. S3 shows exemplars of species-
specific latitudinal normalized abundance curves (i.e., the best fit second degree 
polynomial) depicting the patterns of poleward-increase (G. inflata; Fig. S3a) and 
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Fig. 1. Rank abundance curves. (a) Human dataset (HD); (b) Machine dataset (MD); (c) Combined dataset (CD). The 
ten most abundant species for each dataset are labeled. Although the relative ordering shows some differences 
between the human (a) and machine (b) datasets (see text), the same ten species comprise the most abundant 
species in both datasets.
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poleward-decrease (G. ruber; Fig. S3b). The exhibited patterns generally match between 
the HD and the MD within a species, with divergent patterns occurring primarily in 
species with NCD < 300. Such a low NCD results in only ~150 individuals per dataset, 
which is unlikely to be a statistically robust sample from which to reconstruct diversity 
patterns across the Atlantic. Some species, such as Globigerina falconensis, exhibit 
neither pattern (Fig. S3c). Instead, G. falconensis exhibits a gradual increase in 
abundance from the southern to the northern latitudes. While this may reflect a true 
biological pattern, such a pattern would also result from geographical sampling bias in 
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Fig. 2. Species-specific latitudinal normalized abundance maps. The selected maps 
show various patterns observed in the datasets. In general, the normalised abundance 
patterns match for species with high N, as in (a) Neogloboquadrina incompta 
(NCD=4,295). Large differences in normalised abundance patterns are seen primarily in 
datasets with low N, as in (b) Globigerinita uvula (NCD=17). Many species exhibit either 
a pattern of increase in normalised abundance towards the poles, as in (c) Globorotalia 
inflata (NCD=2,784), or a pattern of decrease in normalised abundance towards the 
poles, as in (d) Globigerinoides ruber (NCD=12,714). Species exemplar images sourced 
from the Endless Forams database.
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the northern hemisphere, which may also explain the offset between the HD and MD 
curves observed in Neogloboquadrina incompta (Fig. S3d; see below for further 
discussion).




Fig. 3a shows the latitudinal (observed) species richness curves for the human, machine, 
and combined datasets. As seen from the best-fit second-order polynomial curves, all 
datasets show the same pattern of higher species richness near the equator and 
decreasing species richness towards the poles, i.e., the latitudinal species diversity 
gradient that has long typified marine ecosystems and zooplankton diversity patterns 
(Yasuhara et al. 2012). We note that the richness curve for the HD is negatively offset from 
the curves for the MD and the CD, and that this offset appears to be greater towards the 
poles. This pattern of lower diversity in the HD is also observed in the α-diversity metrics 
(Fig. S4). While this offset may be caused in part by the smaller number of individuals in 
the HD compared to the MD (by ~5,000 specimens), it is unlikely to be the only cause 
given that the individuals were randomly sampled (see Materials & Methods). We suggest 
two possible related contributing factors: (1) Human bias against identification of rare 
species and (2) Sampling bias in the northern vs. southern hemispheres. 


As discussed in Hsiang et al. (2019), human identifiers tend to preferentially assign 
species identities that they perceive to be more numerous to ambiguous individuals. That 
is, if a community includes a common taxon A and a rare taxon B that closely resembles 
taxon A, then human classifiers will often incorrectly identify taxon B as taxon A. The 
same “pull towards the common” bias does not affect machine classifiers to the same 
extent. This effect may be pronounced at the poles, where there are fewer species overall, 
and planktonic foraminifer communities are relatively dominated by Neogloboquadrina 
pachyderma and N. dutertrei. Indeed, when comparing species relative abundances at 
the highest latitude site in our dataset (IPE.08295; Fig. 4), we see that the relative 
abundance of N. pachyderma and N. dutertrei are higher for the HD than for the MD and 
the CD. The same is true for the site with the lowest latitude (IPE.08248), although less 
pronounced (though we note that the community at site IPE.08248 is also relatively less 
dominated by these two species compared to IPE. 08295). This pattern can be seen in 
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Fig. 3. Latitudinal patterns in species richness and body size. (a) Observed species richness for the HD, MD, and CD plotted against 
site latitude. The curves represent best-fit second-order polynomials for each dataset. (b) Average 2D enclosed area (µm2) of all 
individuals at a site with 95% confidence intervals plotted against site latitude. (c) Average estimated volume (µm3) of all individuals 
at a site with 95% confidence intervals plotted against site latitude. Sea-surface temperatures (SSTs) are zonal means between 2000 
and 2018 (see Materials & Methods).
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the exemplar sitewise species distribution plots (Fig. S5; all plots available in 
Supplementary Materials), where for sites where one or two species predominate, the 

number of individuals assigned to those species by human identifiers is much higher than 
the number assigned by the trained CNN (e.g., site IPE.08171 and site IPE.08316; Fig. 
S5a-b). In contrast, sites with more even communities tend to have more individuals per 
species in the machine dataset (e.g., site IPE.08378 and IPE.08262; Fig. S5c-d), as would 
be expected given that the machine dataset contains more specimens overall.


It is well known that biodiversity studies are affected by sampling bias, such as the far 
greater number of inventories taken from the northern compared to the southern 
hemisphere. For instance, Garraffoni et al. (2021) describe a pervasive inventory 
completeness bias in marine meiobenthic fauna, with the difference between observed 
and expected species richness being much higher in the southern vs. northern 
hemisphere. A corollary of this bias is that reconstructed diversity patterns in the northern 
latitudes are likely to be more complete and accurate than those in the southern latitudes. 
In our dataset, only three sites are found in the southern hemisphere, and the latitudinal 
patterns we describe must be evaluated in light of this bias, particularly for species with 
relatively low abundance. In addition, the meta-effects of geographical sampling bias on 
the performance of human taxonomists must also be considered. As inventories from the 
southern hemisphere are less numerous, taxonomists will also be less familiar with the 
extant diversity in sites from southern latitudes, particularly rare species. Given the 
observed human bias against identifying rare species, these biases are likely to have 
additive effects that result in human-classified datasets consistently underestimating 
species diversity in the southern hemisphere, a pattern we see in Fig. S3a-b, d. In the 
case of N. incompta (Fig. S3d), we actually see this discrepancy between the HD and the 
other two datasets disappear as we move towards the northern hemisphere. In our 
dataset, there are 653 specimens of N. incompta from the southern hemisphere (NS), 
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Fig. 4. Sitewise relative abundance. Within each site, relative abundances are compared between the combined, human, and 
machine datasets. In general, relative abundance profiles match well between datasets. Sites are ordered from southernmost (left; 
45.675˚S) to northernmost (right; 67.65˚N) latitude, which makes diversity patterns — such as the relative abundance of 
Neogloboquadrina dutertrei and N. incompta increasing towards the poles — apparent.
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compared to 3,642 in the north (NN). This pattern where NN >> NS is exhibited throughout 
our dataset.


We observe the familiar pattern of small body sizes towards the poles and increasing 
body size towards the equator in all datasets, for both 2D enclosed area (Fig. 3b) and 
estimated volume (Fig. 3c). This pattern follows zonal mean sea-surface temperatures. 
The body sizes exhibited by the HD are positively offset from the MD, which may be the 
effect of human taxonomists preferentially identifying larger specimens, as smaller 
individuals are more difficult to classify. The HD is comprised of only individuals with high-
quality species labels (see Materials & Methods); since smaller individuals are more likely 
to engender disagreement between human classifiers, they have a higher chance of being 
excluded from the HD.


Fig. 5 shows the Jaccard community dissimilarity indices for all sitewise comparisons for 
the HD (a), MD (b), and CD (c). In the HD, the sites that appear to have relatively elevated 
Jaccard indices are IPE.08295, IPE.08320, IPE.08248, and IPE.08171. These sites also 
show relatively elevated Jaccard index values the MD (though much less markedly for 
IPE.08248). In particular, sites IPE.08295 and IPE.08171 appear to be the most distinct 
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Fig. 5. ß-diversity heatmaps. The Jaccard community indices calculated for each sitewise comparison for all 23 sites sampled in this 
study are shown for the (a) human dataset, (b) machine dataset, and (c) combined dataset. The absolute element-wise differences 
between the Jaccard indices for the human (JHD) and machine datasets (JMD) is shown in (d). Axes are ordered from southernmost 
(left/bottom) to northernmost (right/top) sites.
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from one another in all datasets. IPE.08295 is the northernmost site in our sample at 
67.65˚N, and is highly dominated by N. pachyderma and N. dutertrei (Fig. 4). In contrast, 
IPE.08171 is a tropical site (12.973˚N) dominated by Globigerinoides ruber and G. 
sacculifer (Fig. S5a), and also contains many large individuals (outlier site in Fig. 3b-c). In 
effect, these two sites represent the poleward and equatorial community extremes, 
respectively. IPE. 08320 is the site with the second-most northern latitude (54.067˚N) and 
thus exhibits higher Jaccard indices against lower latitude sites (and a relatively low 
Jaccard index against IPE.08295). Finally, IPE.08248 is the southernmost site in our 
sample (45.675˚S), and is relatively dominated by N. pachyderma. We note that the 
Jaccard indices for IPE.08248 in the MD are not as elevated as those for the HD, as 
highlighted in Fig. 5d, which shows the absolute differences of the sitewise Jaccard 
indices for the HD (JHD) and the MD (JMD). This may be caused by the commonality bias 
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exhibited by human classifiers, as examination of the species abundances at IPE.08248 
(see Supplementary Materials) reveals that the MD contains eight rare species that are 
unrepresented in the HD. (The converse, where a rare species is represented in the HD 
and not the MD, does not occur at this site.) This may also explain why the difference in 
Jaccard indices for the comparison between site IPE.08295 and IPE.08248 is high – there 
are three rare species represented in the MD and not the HD for site IPE.08295, which are 
also represented in the MD but not the HD for site IPE.0248.


Finally, we calculate the assemblage comparison diversity estimates proposed by Chao et 
al. (2020) to compare diversity patterns across assemblages. In general, the patterns 
exhibited by the HD and the MD are similar as the order q (which quantifies sensitivity to 
species abundances in our diversity metrics; see Chao (2020)) changes for the sample 
completeness (Fig. 6a), diversity (Fig. 6c), and evenness (Fig. 6e) profiles. The sample-
size- and coverage-based rarefaction/extrapolation curves are also similar for the HD and 
the MD across the values of q (e.g., species diversity decreases relatively as q increases). 
However, in every diversity metric, we observe that the diversity in the MD is higher than 
in the HD, except in some cases at low values of q (e.g., when q = 0 in the size-based 
rarefaction curve [Fig. 6b] — that is, when relative abundances are not taken into 
account). Evenness also exhibits a positive offset for all values of q for the MD vs. the HD 
(Fig. 6e). These results corroborate our other analyses and previous studies 
demonstrating the rarity bias present in human-identified datasets, and suggests that the 
offset in species richness between the HD and the MD (Fig. 3a) is not an artefact resulting 
from differences in sample size or coverage between the two datasets.


Discussion 

We have shown that CNN-driven community ecology is not only feasible and accurate, 
but also avoids biases that can affect datasets generated by human classifiers that may 
result in misleading conclusions about biodiversity patterns. Aside from the commonality 
and sampling biases discussed above, human classifiers are also subject to practical 
limitations that a well-trained CNN could avoid. For instance, smaller individuals are 
harder to identify for human classifiers, and thus human-identified datasets are more 
likely to omit smaller members of a community (as exhibited by the latitude-size 
relationship curves in Fig. 3b-c). Machine classifiers are not affected by this size bias, 
assuming the images used are taken at high enough resolution. We note that the omission 
of smaller specimens by human classifiers can occur both at sample preparation stage 
and at identification stage, particularly given that current standard practices for building 
planktonic foraminifer inventories involves hand-picking individuals and affixing them to 
microscope slides. Thus, in order to truly take advantage of computer vision methods for 
large-scale studies of community ecology and biodiversity, there must be concurrent 
advances in high-throughput imaging and digitisation of specimens that limit or remove 
the likelihood of human biases affecting dataset composition.
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